如图,PQ为半圆O的直径,A为以OQ为直径的半圆A的圆心,圆O的弦PN切圆A于点M,PN=8,则圆A的半径为_.
问题描述:
如图,PQ为半圆O的直径,A为以OQ为直径的半圆A的圆心,圆O的弦PN切圆A于点M,PN=8,则圆A的半径为______.
答
如图所示,连接AM,QN.
由于PQ是⊙O的直径,∴∠PNQ=90°.
∵圆O的弦PN切圆A于点M,∴AM⊥PN.
∴AM∥QN,
∴
=PM PN
=PA PQ
.3 4
又PN=8,∴PM=6.
根据切割线定理可得:PM2=PO•PQ.
设⊙O的半径为R.则62=R•2R,
∴R=3
,
2
∴⊙A的半径r=
R=1 2
.3
2
2
故答案为:
.3
2
2