一个正方形内做面积最大的等边三角形

问题描述:

一个正方形内做面积最大的等边三角形
如题,在一个正方形内做一个面积最大的等边三角形应该怎样做,
只能用尺子和圆规,而且要证明
证明此等边三角形面积最大

楼上作的等边三角形不可能是最大的,最起码,以正方形任意一边为边长作正三角形也比你作的面积要大
最大的正三角形是在BC、CD各作点E、F,使△AEF是正三角形
作法:
1、以作∠MAC=60°,使AM、AC分别在AB的两侧
2、作∠MAC的平分线交BC于E
3、过E作EF⊥AC,交CD于F
则△AEF是正三角形