已知:x>y>0,且xy=1,若x2+y2≥a(x-y)恒成立,则a的取值范围为_.

问题描述:

已知:x>y>0,且xy=1,若x2+y2≥a(x-y)恒成立,则a的取值范围为______.

∵x>y>0,由x2+y2≥a(x-y)恒成立,得a≤x2+y2x−y恒成立,又x2+y2x−y=(x−y)2+2xyx−y,而x>y>0,且xy=1,∴x2+y2x−y=(x−y)2+2xyx−y=(x−y)2+2x−y=(x−y)+2x−y≥2(x−y)•2x−y=22,∴a≤22.故答案...