已知∠AOB=40°,自O点引射线OC,若∠AOC:∠COB=2:3.求OC与∠AOB的平分线所成的角的度数.
问题描述:
已知∠AOB=40°,自O点引射线OC,若∠AOC:∠COB=2:3.求OC与∠AOB的平分线所成的角的度数.
答
若OC在∠AOB内部,
∵∠AOC:∠COB=2:3,
∴设∠AOC=2x,∠COB=3x,
∵∠AOB=40°,
∴2x+3x=40°,
得x=8°,
∴∠AOC=2x=2×8°=16°,∠COB=3x=3×8°=24°,
∵OD平分∠AOB,
∴∠AOD=20°,
∴∠COD=∠AOD-∠AOC=20°-16°=4°.
若OC在∠AOB外部,
∵∠AOC:∠COB=2:3,
∴设∠AOC=2x,∠COB=3x,
∵∠AOB=40°,
∴3x-2x=40°,
得x=40°,
∴∠AOC=2x=2×40°=80°,∠COB=3x=3×40°=120°,
∵OD平分∠AOB,
∴∠AOD=20°,
∴∠COD=∠AOC+∠AOD=80°+20°=100°.
∴OC与∠AOB的平分线所成的角的度数为4°或100°.