直线y=1/2x+1与抛物线y=ax^2+bx-3交于A,B两点,点A在x轴上,点B的纵坐标为3,点P是直线AB下方的抛物线上一动点(不与A,B重合),过点P作X轴的垂线交直线AB与点C,作PD⊥AB于点D,设点P的横坐标为m,连接PB,线
问题描述:
直线y=1/2x+1与抛物线y=ax^2+bx-3交于A,B两点,点A在x轴上,点B的纵坐标为3,点P是直线AB下方的抛物线上一动点(不与A,B重合),过点P作X轴的垂线交直线AB与点C,作PD⊥AB于点D,设点P的横坐标为m,连接PB,线段PC把△PDB分成两个三角形,是否存在适合的m值,使这两个三角形的面积之比为9:10?若存在,求出m值;若不存在,说明理由
答
参考最后一题的答案,