设数列{an}的前n项和为Sn,且a1=1,Sn+1=4an+2(n∈N*), (1)设bn=an+1-2an,求证:数列{bn}是等比数列; (2)cn=an2n,求证:数列{cn}是等差数列; (3)求Sn=a1+a2+…+an的值.
问题描述:
设数列{an}的前n项和为Sn,且a1=1,Sn+1=4an+2(n∈N*),
(1)设bn=an+1-2an,求证:数列{bn}是等比数列;
(2)cn=
,求证:数列{cn}是等差数列; an 2n
(3)求Sn=a1+a2+…+an的值.
答
(1)由题意,Sn+1=4an+2,Sn+2=4an+1+2,两式相减,得Sn+2-Sn+1=4(an+1-an)即an+2=4an+1-4an.∴an+2-2an+1=2(an+1-2an)∵bn=an+1-2an∴bn+1=2bn(n∈N*),q=bn+1bn=2,又由题设,得1+a2=4+2=6,即a2=5b1=a2-2...