设实数x,y,满足y+x^2=0,0<a<1,求证loga(a^x+a^y)<1/8+loga2
问题描述:
设实数x,y,满足y+x^2=0,0<a<1,求证loga(a^x+a^y)<1/8+loga2
答
∵y+x^2=0
∴x+y=x-x^2=-(x-2)^2+1/4≤1/4
∴x+y的最大值=1/4
∵0