设a={x/x^2+2(a+1)x+a^2-1=0},b={x/(x+4)x(x- 1/2) =0 ,x属于z},若a交b=a,求a的取值范围

问题描述:

设a={x/x^2+2(a+1)x+a^2-1=0},b={x/(x+4)x(x- 1/2) =0 ,x属于z},若a交b=a,求a的取值范围

B = {x|(x+4)x(x-1/2)=0,x∈Z} = {0,-4} A∩B=A--->A = "空集"或{0}或{-4}或B (1)A = "空集" --->二次方程x²+2(a+1)x+a²-1=0无解 --->Δ = 4(a+1)²-4(a²-1) = 4(2a+2)<0--->a<-1 (2)A = {...