f(x)=3sin(2x+π/3),则比较f(1),f(2),f(3)三者大小、怎么比啊?
问题描述:
f(x)=3sin(2x+π/3),则比较f(1),f(2),f(3)三者大小、怎么比啊?
答
f(1)=3sin(2+π/3),f(2)=3sin(4+π/3),f(3)=3sin(6+π/3)
2+π/3是第二象限角;4+π/3是第四象限角;6+π/3是第一象限角
所以f(1)>0,f(2)0
f(1)=3sin(2+π/3)=3sin(2π/3-2),f(3)=3sin(6+π/3)=3sin(6-5π/3),
0