如图,AB是⊙O的直径,C为圆周上一点,∠ABC=30°,⊙O过点B的切线与CO的延长线交于点D. 求证:(1)∠CAB=∠BOD; (2)△ABC≌△ODB.
问题描述:
如图,AB是⊙O的直径,C为圆周上一点,∠ABC=30°,⊙O过点B的切线与CO的延长线交于点D.
求证:(1)∠CAB=∠BOD;
(2)△ABC≌△ODB.
答
证明:(1)∵AB是⊙O的直径,∴∠ACB=90°,由∠ABC=30°,∴∠CAB=60°,又OB=OC,∴∠OCB=∠OBC=30°,∴∠BOD=60°,∴∠CAB=∠BOD.(2)在Rt△ABC中,∠ABC=30°,得AC=12AB,又OB=12AB,∴AC=OB,由BD切⊙O于...