设函数f(q)=)2sinqcosq+5/2)/(sinq+cosq)Q属于【0,pai/2].的最小值

问题描述:

设函数f(q)=)2sinqcosq+5/2)/(sinq+cosq)Q属于【0,pai/2].的最小值

f(q)=(2sinqcosq+5/2)/(sinq+cosq)
=[(sinq+cosq)²+3/2]/(sinq+cosq)
=(sinq+cosq)+3/[2(sinq+cosq)]
≥2√{(sinq+cosq)×3/[2(sinq+cosq)]}=2√(3/2)=√6 (∵q∈[0,π/2]∴sinq+cosq>0)
最小值=√6那f(π/12)=当sinq+cosq=3/[2(sinq+cosq)]时取最小值即(sinq+cosq)²=3/2sin²q+cos²q+2sinqcosq=3/22sinqcosq=1/2sin2q=1/22q=π/6或5π/6(∵q∈[0,π/2])q=π/12 或5π/12 时取最小值∴f(π/12)=√6