如果记y=x/(x+1),并且f(√ 1)表示x=√ 1时y的值.即f(√ 1)=√ 1/(√ 1+1)=1/2;f(√ 2)表示x=√ 2的值,
问题描述:
如果记y=x/(x+1),并且f(√ 1)表示x=√ 1时y的值.即f(√ 1)=√ 1/(√ 1+1)=1/2;f(√ 2)表示x=√ 2的值,
即f(√ 2)=√ 2/(√ 2+1)=√ 2(√ 2-1)/(√ 2+1)(√ 2-1);f(√ 1/√ 2)=(√ 1/√ 2)/((√ 1/√ 2)+1)=(√2-1)/(√2+1)(√2-1)=√2-1,求f(√1)+f(√2)+f(√3)+...+f(√2012)+f(√1/√2)+f(√1/√3)+...+f(√1/√2012)
答
f(x)=x/(x+1)f(1/x)=(1/x)/(1/x+1)=1/(x+1)∴f(x)+f(1/x)=1f(√1)+f(√2)+f(√3)+...+f(√2012)+f(√1/√2)+f(√1/√3)+...+f(√1/√2012)=f(√1)+ [(f(√2)+f(1/√2)]+ [(f(√3)+f(1/√3)]+……+ [(f(√2012)+f(...