【证明】Sin A+sin B=2Sin22

问题描述:

【证明】Sin A+sin B=2Sin22

应该是sinA+sinB=2sin[(A+B)/2]cos[(A-B)/2] A=(A+B)/2+(A-B)/2.B=(A+B)/2-(A-B)/2所以sin(A+B)/2cos(A-B)/2+cos(A+B)/2sin(A-B)/2+sin(A+B)/2cos(A-B)/2-cos(A+B)/2sin(A-B)/2=2sin(A+B)/2cos(A-B)/2