若实数a、b、c满足a2+b2+c2=9,那么代数式(a-b)2+(b-c)2+(c-a)2的最大值是______.
问题描述:
若实数a、b、c满足a2+b2+c2=9,那么代数式(a-b)2+(b-c)2+(c-a)2的最大值是______.
答
知识点:本题主要考查了不等式的基本性质a2+b2≥2ab.在解答此题时,还利用了非负数的性质(a+b+c)2≥0.
答案解析:由展开代数式(a-b)2+(b-c)2+(c-a)2,然后将其转化为两数差的形式(a-b)2+(b-c)2+(c-a)2=27-(a+b+c)2,
最后根据不等式的性质a2+b2≥2ab来解答.
考试点:不等式的性质.
知识点:本题主要考查了不等式的基本性质a2+b2≥2ab.在解答此题时,还利用了非负数的性质(a+b+c)2≥0.