求一般椭圆的焦点三角形的最大角
问题描述:
求一般椭圆的焦点三角形的最大角
答
设焦点F1,F2,椭圆上一点P,∠F1PF2=β,PF1=x,PF2=2a-x
cosβ=(x²+(2a-x)²-4c²)/2x(2a-x) =(x²-2ax+2b²)/(2ax-x²) = 1+2b²/(2ax-x²)
当x=a时,cosβ取最小值,∠F1PF2最大
此时,P位于短轴上,∠F1PF2=2arcsin(c/a)