设双曲线以椭圆x^2/25+y^2/16=1长轴的两个端点为焦点,其准线过椭圆的焦点则双曲线的渐近线的斜率为多少?
问题描述:
设双曲线以椭圆x^2/25+y^2/16=1长轴的两个端点为焦点,其准线过椭圆的焦点则双曲线的渐近线的斜率为多少?
答
x²/25+y²/9=1
a²=25
a=5
b²=9
b=3
c²=a²-b²=16
c=4
长轴端点(-5,0)(5,0)
焦点为(-4,0)(4,0)
双曲线中
双曲线焦点c=5
根据题意,双曲线准线x=±a²/c=±4
双曲线a²=20
双曲线c²=25
双曲线b²=c²-a²=25-20=5
所以双曲线方程:x²/20-y²/5=1
渐近线x²/20=y²/5
y=±1/2x
斜率为±1/2
答
由题可知长轴的两点为(5,0)(-5,0),而椭圆的焦点为(3,0)(-3,0),所以双曲线c=5,a^2/c=3,所以a^2=15,b^2=10,双曲线方程为x^2/15-y^2/10=1,渐近线为y=(根号6)x/3,y=-(根号6)x/3.