证明:若函数f(x)∈C[a,b],则∀x,x0∈[a,b],有lim(h->0)1/h∫(x0->x)[f(t+h)-f(t)]dt=f(x)-f(x0)
问题描述:
证明:若函数f(x)∈C[a,b],则∀x,x0∈[a,b],有lim(h->0)1/h∫(x0->x)[f(t+h)-f(t)]dt=f(x)-f(x0)
答
证明:若函数f(x)∈C[a,b],则∀x,x0∈[a,b],有lim(h->0)1/h∫(x0->x)[f(t+h)-f(t)]dt=f(x)-f(x0)