设f(x)=x2-2ax+2(a∈R),当x∈[-1,+∞)时,f(x)≥a恒成立,求a的取值范围.
问题描述:
设f(x)=x2-2ax+2(a∈R),当x∈[-1,+∞)时,f(x)≥a恒成立,求a的取值范围.
答
f(x)=x2-2ax+2=(x-a)2+2-a2
f(x)图象的对称轴为x=a
为使f(x)≥a在[-1,+∞)上恒成立,
只需f(x)在[-1,+∞)上的最小值比a大或等于a即可
∴(1)a≤-1时,f(-1)最小,解,解得-3≤a≤-1
(2)a≥-1时,f(a)最小,解
a≥−1 f(a)=2−a2≥a
解得-1≤a≤1
综上所述-3≤a≤1
答案解析:区分图象的对称轴与区间[-1,+∞)的关系,根据二次函数在对称轴两边的单调性,求最小值即可.
考试点:函数恒成立问题.
知识点:本题考查二次函数在给定区间上的恒成立问题,关键是讨论对称轴与区间的关系,转化为对称轴左右单调性相反,从而确定函数最值,属于基础题.