等差数列{an}中,S10=48,S20=60,则S30=?

问题描述:

等差数列{an}中,S10=48,S20=60,则S30=?

S10=10a+(9*10/2)d
=10a+45d=48
S20=20a+(19*20/2)d
=20a+190d=60
相减
10a+145d=12
S30=30a+(29*30/2)d
=30a+435d
=3(10a+145d)
=3*12
=36

法一:基本量运算
10a1+10*9*d/2=48
20a1+20*19*d/2=60
解得a1= d= s30=30a1+30*29*d/2=
法二:s10,s20-s10,s30-s20 成等差数列,得s30=36

设等差数列公差d
设T1 = S10 = 48
T2 = S20-S10 = 100d = 60-48 = 12
T3 = S30-S20 = 100d = 12
S30 = 48+12+12 = 72

S30-S20=S20-S10
S30=72

S10 S20-S10 S30-S20 也是等差的 满足A+C=2B 解得S30=36 你试试对不

S30-S20 , S20-S10 ,S10
S上面三项成等差数列
这是等差数列的一个简单推论
所以
S30-60 ,12, 48,成等差数列
S30 = 36
peace!