证明(a+b)\(a-b)+(b+c)\(b-c)+(c+a)\c-a)+(a+b)(b+c)(c+a)\(a-b)(b-c)(c-a)=0

问题描述:

证明(a+b)\(a-b)+(b+c)\(b-c)+(c+a)\c-a)+(a+b)(b+c)(c+a)\(a-b)(b-c)(c-a)=0

没什么巧妙的算法,只能老老实实的通分消去分母计算,等式两边边同乘以(a-b)(b-c)(c-a)