如图,AB∥CD,分别探讨下面四个图形中∠APC与∠PAB、∠PCD的关系,请你从所得到的关系中任选一个加以说明.(适当添加辅助线,其实并不难)
问题描述:
如图,AB∥CD,分别探讨下面四个图形中∠APC与∠PAB、∠PCD的关系,请你从所得到的关系中任选一个加以说明.(适当添加辅助线,其实并不难)
答
如图:(1)∠APC=∠PAB+∠PCD;证明:过点P作PF∥AB,则AB∥CD∥PF,∴∠APC=∠PAB+∠PCD(两直线平行,内错角相等).(2)∠APC+∠PAB+∠PCD=360°;(3)∠APC=∠PAB-∠PCD;(4)∵AB∥CD,∴∠POB=∠PCD,∵∠...
答案解析:关键过转折点作出平行线,根据两直线平行,内错角相等,或结合三角形的外角性质求证即可.
考试点:平行线的性质;三角形的外角性质.
知识点:两直线平行时,应该想到它们的性质,由两直线平行的关系得到角之间的数量关系,从而达到解决问题的目的.