如图,AB平行CD,分别探讨下面四个图形中∠APC与∠PAB……如图,AB平行CD,分别探讨下面四个图形中∠APC与∠PAB、∠PCD的关系,请你从所得到的关系中任选一个加以说明.适当添加辅助线(1)∠APC=∠PAB+∠PCD (2)∠APC+∠PAB+∠PCD =360 (3)∠PAB=∠APC+∠PCD (4)∠PCD=∠APC+∠PAB 辅助线为E.求四个过程.图链接http://hiphotos.baidu.com/%CD%AF%BB%B0%5F%BC%D2/mpic/item/5356ca8e8c25ebcef11f367f.jpg
如图,AB平行CD,分别探讨下面四个图形中∠APC与∠PAB……
如图,AB平行CD,分别探讨下面四个图形中∠APC与∠PAB、∠PCD的关系,请你从所得到的关系中任选一个加以说明.适当添加辅助线
(1)∠APC=∠PAB+∠PCD
(2)∠APC+∠PAB+∠PCD =360
(3)∠PAB=∠APC+∠PCD
(4)∠PCD=∠APC+∠PAB
辅助线为E.
求四个过程.
图链接http://hiphotos.baidu.com/%CD%AF%BB%B0%5F%BC%D2/mpic/item/5356ca8e8c25ebcef11f367f.jpg
考点:平行线的性质.专题:证明题.分析:图1:首先过点P作PE∥AB,由AB∥CD,即可得AB∥PE∥CD,然后根据两直线平行,内错角相等,即可求得答案;
图2:首先过点P作PE∥AB,由AB∥CD,即可得AB∥PE∥CD,然后根据两直线平行,同旁内角互补,即可求得答案;
图3:由AB∥CD,根据两直线平行,同位角相等,即可求得∠A=∠1,又由三角形外角的性质,即可求得答案;
图4:由AB∥CD,根据两直线平行,内错角相等,即可求得∠A=∠1,又由三角形外角的性质,即可求得答案.图1:∠APC=∠PAB+∠PCD.
理由:过点P作PE∥AB,
∵AB∥CD,
∴AB∥PE∥CD(平行线的传递性),
∴∠1=∠A,∠2=∠C,
∴∠APC=∠1+∠2=∠PAB+∠PCD,即∠APC=∠PAB+∠PCD;
图2:∠APC+∠PAB+∠PCD=360°.
理由:过点P作PE∥AB.
∵AB∥CD,
∴AB∥PE∥CD(平行线的传递性),
∴∠A+∠1=180°,∠2+∠C=180°,
∴∠A+∠1+∠2+∠C=360°,
∴∠APC+∠PAB+∠PCD=360°;
图3:∠APC=∠PCD-∠PAB.
理由:延长DC交AP于点E.
∵AB∥CD,
∴∠1=∠PAB(两直线平行,同位角相等);
又∵∠PCD=∠1+∠APC,
∴∠APC=∠PCD-∠PAB;
图4:∴∠PAB=∠APC+∠PCD.
理由:∵AB∥BC,
∴∠1=∠PAB(两直线平行,内错角相等);
又∵∠1=∠APC+∠PCD,
∴∠PAB=∠APC+∠PCD.点评:此题考查了平行线的性质与三角形外角的性质.此题难度不大,解题的关键是掌握两直线平行,同旁内角互补,两直线平行,内错角相等以及两直线平行,同位角相等定理的应用与辅助线的作法.
没图啊。
第一个图:连接AC可知:∠APC+∠PAB+∠PCD=360度; 【∠BAC+∠DCA=180;三角形内角和180】 第二个图:连接AC可知:∠APC=∠PAB+∠PCD; 【【∠BAC+∠DCA=180;∠CAP+∠ACP+∠APC=180】 第三个图:∠APC...
如图所示,已知AB∥CD,分别探索下列四个图形中∠P与∠A,∠C的关系,请你从所得的四个关系中任选一个加以说明.
考点:平行线的性质;三角形的外角性质.
专题:开放型;探究型.
分析:本题考查的是平行线的性质以及平行线的判定定理.
(1),(2)都需要用到辅助线利用两直线平行,内错角相等的定理加以证明;
(3),(4)是利用两直线平行,同位角相等的定理和三角形外角的性质加以证明.
(1)∠A+∠C+∠P=360;
(2)∠A+∠C=∠P;
(3)∠A+∠P=∠C;
(4)∠C+∠P=∠A.
说明理由(以第三个为例):
已知AB∥CD,根据两直线平行,同位角相等及三角形的一个外角等于两不相邻内角之和,可得∠C=∠A+∠P.
点评:考生应熟知平行线的有关知识点,这是中考常考的题型.