∑(∞,n=0)x^(2n+1)/(2n+1)收敛域及和函数
问题描述:
∑(∞,n=0)x^(2n+1)/(2n+1)收敛域及和函数
答
逐项求导得:∑(∞,n=0)x^(2n+1)/(2n+1)的导数等于∑(∞,n=0)x^(2n)=1/(1-x^2),积分得: ∑(∞,n=0)x^(2n+1)/(2n+1)=(1/2)*ln(1+x)/(1-x) 收敛域为-1
答
1.S(x)=∑(∞,n=0)x^(2n+1)/(2n+1),
S'(X)=∑(∞,n=0)x^2n=1/(1-x^2) 收敛域为(-1,1)
2.S(x)=∫(0,x)1/(1-x^2)dx=1/2∫(0,x)[1/(1+x)+1/(1-x)]dx=1/2ln(1+x)/(1-x) x取值范围(-1,1)