已知M(-2,0),N(2,0)两点,动点P在y轴上的射影为H,且使向量PH*向量PH与向量PM*向量PN分别是公比为2的等比数

问题描述:

已知M(-2,0),N(2,0)两点,动点P在y轴上的射影为H,且使向量PH*向量PH与向量PM*向量PN分别是公比为2的等比数

设P(x,y)
则向量PH*PH=y^2
向量PM*PN=(-2-x)(2-x)+(0-y)(0-y)=x^2+y^2-4
已知向量PH*向量PH与向量PM*向量PN分别是公比为2的等比数列
则x^2+y^2-4=2y^2
所以x^2-y^2=4
x^2/4-y^2/4=1
故P的轨迹是实轴和虚轴均为2的等轴双曲线。
希望能帮到你,祝学习进步O(∩_∩)O

1.设P(x,y),H=y,即H(0,y) 所以PH=(-x,0), PM=(-2-x,-y), PN=(2-x,-y) 所以 PH2=x^2 PM*PN=x^2-4+y^2 因为2* PH2 = PM*PN 所以有2 x^2= x^2-4+y^2 所以y^2-x^2=4 此即为动点P的轨迹方程,也可以写为标准形式:y^2/4-...