过点(1,2)的直线l将圆(x-2)2+y2=4分成两段弧,当劣弧所对的圆心角最小时,求直线l的方程.

问题描述:

过点(1,

2
)的直线l将圆(x-2)2+y2=4分成两段弧,当劣弧所对的圆心角最小时,求直线l的方程.

由图形可知点A(1,

2
)在圆(x-2)2+y2=4的内部,
圆心为O(2,0)要使得劣弧所对的圆心角最小,
只能是直线l⊥OA,
所以kl=−
1
kOA
=−
1
2
2
2

故直线方程为y−2=
2
2
(x−1)

答案解析:首先判断定点的是在圆内还是在圆外,然后推断出要使得劣弧所对的圆心角最小,只能是直线l⊥OA,进而根据0A的斜率求得直线l的斜率,则根据点斜式可求得直线的方程.
考试点:直线与圆相交的性质.
知识点:本题主要考查了直线与圆相交的性质.涉及直线与圆的位置关系时常需要用数形结合的思想,直观的解决问题.