设函数f(x)在[a,b]上连续,证明:∫(a→b)f(x)dx=(b-a)∫(0→1)f[a+(b-a)x]dx
问题描述:
设函数f(x)在[a,b]上连续,证明:∫(a→b)f(x)dx=(b-a)∫(0→1)f[a+(b-a)x]dx
答
对等式左端的定积分,作自变量代换x=a+(b-a)t即可.
设函数f(x)在[a,b]上连续,证明:∫(a→b)f(x)dx=(b-a)∫(0→1)f[a+(b-a)x]dx
对等式左端的定积分,作自变量代换x=a+(b-a)t即可.