设函数f(x)在[a,b]上连续,证明:∫(a→b)f(x)dx=(b-a)∫(0→1)f[a+(b-a)x]dx

问题描述:

设函数f(x)在[a,b]上连续,证明:∫(a→b)f(x)dx=(b-a)∫(0→1)f[a+(b-a)x]dx

对等式左端的定积分,作自变量代换x=a+(b-a)t即可.