如图,甲乙两船从港口A同时出发,甲船以16海里/时速度向北偏东40°航行,乙船向南偏东50°航行,3小时后,甲船到达C岛,乙船到达B岛.若C、B两岛相距60海里,问乙船的航速是多少?

问题描述:

如图,甲乙两船从港口A同时出发,甲船以16海里/时速度向北偏东40°航行,乙船向南偏东50°航行,3小时后,甲船到达C岛,乙船到达B岛.若C、B两岛相距60海里,问乙船的航速是多少?

根据题意,得∠CAB=180°-40°-50°=90°,
∵AC=16×3=48(海里),BC=60海里,
∴在直角三角形ABC中,根据勾股定理得:AB=

602482
=
108×12
=36(海里).
则乙船的速度是36÷3=12海里/时.
答案解析:首先理解方位角的概念,根据所给的方位角得到∠CAB=90°.根据勾股定理求得乙船所走的路程,再根据速度=路程÷时间,计算即可.
考试点:勾股定理的应用;方向角.

知识点:此题一定要理解方位角的概念,熟练运用勾股定理,计算的时候,注意运用平方差公式可以简便计算.