求函数y=cosx+cos(x-π/3)的最大值

问题描述:

求函数y=cosx+cos(x-π/3)的最大值



y=cosx+cos(x-π/3)
=2cos[(x+x-π/3)/2]·cos[(x-(x-π/3))/2]
=2cos(x-π/6)cosπ/6
=√3cos(x-π/6)

函数y=cosx+cos(x-π/3)的最大值为√3

(这是基于和差化积公式cos α+cos β=2cos[(α+β)/2]·cos[(α-β)/2] )

【数学辅导团】为您解答,
不理解请追问
理解请及时选为满意回答!(*^__^*)谢谢!

y=cosx+cos(x-π/3)=cosx+cosxcos(π/3)+sinxsin(π/3)=(3/2)cosx+(√3/2)sinx=√3* [cosx*(√3/2)+sinx*(1/2)] =√3[cosxsin(π/3)+cosxsin(π/3)]=√3sin(x+π/3)所以函数y=cosx+cos(x-π/3)的最大值为√3...