已知cosa=4/5,求sin^4a+cos^4a

问题描述:

已知cosa=4/5,求sin^4a+cos^4a

cosa=4/5 sin^2a=1-cos^2a sin^2a=9/25
sin^4a+cos^4a=(sin^2a)^2+(cos^2a)^2=(9/25)^2+(16/25)^2=337/625
是这样么?

原式sin^4a+cos^4a = (sin^2a+cos^2a)^2 -2sin^2acos^2a =1 -2sin^2acos^2a
cosa=4/5 cos^2a =16/25 sin^2a+cos^2a=1 所以sin^2a=9/25
所以1 -2sin^2acos^2a=1 -288/625 =337/625
原式 =337/625