tan(a+b)=-1,tan(a-b)=1/2,则sin2a/sin2b=多少
问题描述:
tan(a+b)=-1,tan(a-b)=1/2,则sin2a/sin2b=多少
答
sin2a = sin[(a+b)+(a-b)] = sin(a+b)cos(a-b) +cos(a+b)sin(a-b)
sin2b= sin[(a+b)-(a-b)] = sin(a+b)cos(a-b) -cos(a+b)sin(a-b)
则,
sin2a/sin2b=[sin(a+b)cos(a-b) +cos(a+b)sin(a-b)]/[ sin(a+b)cos(a-b) -cos(a+b)sin(a-b)]
分子分母同时除以cos(a+b)cos(a-b),得
=[tan(a+b)+tan(a-b)]/[tan(a+b)-tan(a-b)]
=(-1+1/2)/(-1-1/2)
=3
答
sin2a+sin2b=2sin(a+b)cos(a-b)sin2a-sin2b=2cos(a+b)sin(a-b)(sin2a+sin2b)/(sin2a-sin2b)=[2sin(a+b)cos(a-b)]/[2cos(a+b)sin(a-b)]=tan(a+b)/tan(a-b)=-2sin2a+sin2b=-2sin2a+2sin2b3sin2a=sin2bsin2a/sin2b=1/3