已知数列{an}是公差不为0的等差数列,a1=2,且.a2是a1、a4的等比中项,n∈N*. (I)求数列{an}的通项公式an; (Ⅱ)若数列{an}的前n项和为Sn记数列{1/Sn}的前n项和为Tn,求证:Tn<1.

问题描述:

已知数列{an}是公差不为0的等差数列,a1=2,且.a2是a1、a4的等比中项,n∈N*
(I)求数列{an}的通项公式an
(Ⅱ)若数列{an}的前n项和为Sn记数列{

1
Sn
}的前n项和为Tn,求证:Tn<1.

(Ⅰ)设等差数列{an}的公差为d(d≠0),
由题意得a22a1a4,即(a1+d)2a1(a1+3d)
∴(2+d)2=2(2+3d),解得 d=2,或d=0(舍),
∴an=a1+(n-1)d=2n.
(Ⅱ)由(Ⅰ)得,
Sn=na1+

n(n−1)
2
d=2n+n(n−1)=n2+n,
1
Sn
1
n2+n
1
n(n+1)
=
1
n
1
n+1

Tn
1
S1
+
1
S2
+…+
1
Sn
=(1−
1
2
)+(
1
2
1
3
)+…+(
1
n
1
n+1
)

=1−
1
n+1

∵n∈N*,∴Tn<1.