已知数列{an}是公差不为0的等差数列,a1=2,且.a2是a1、a4的等比中项,n∈N*. (I)求数列{an}的通项公式an; (Ⅱ)若数列{an}的前n项和为Sn记数列{1/Sn}的前n项和为Tn,求证:Tn<1.
问题描述:
已知数列{an}是公差不为0的等差数列,a1=2,且.a2是a1、a4的等比中项,n∈N*.
(I)求数列{an}的通项公式an;
(Ⅱ)若数列{an}的前n项和为Sn记数列{
}的前n项和为Tn,求证:Tn<1. 1 Sn
答
(Ⅰ)设等差数列{an}的公差为d(d≠0),
由题意得a22=a1a4,即(a1+d)2=a1(a1+3d),
∴(2+d)2=2(2+3d),解得 d=2,或d=0(舍),
∴an=a1+(n-1)d=2n.
(Ⅱ)由(Ⅰ)得,
Sn=na1+
d=2n+n(n−1)=n2+n,n(n−1) 2
∴
=1 Sn
=1
n2+n
=1 n(n+1)
−1 n
,1 n+1
∴Tn=
+1 S1
+…+1 S2
=(1−1 Sn
)+(1 2
−1 2
)+…+(1 3
−1 n
),1 n+1
=1−
,1 n+1
∵n∈N*,∴Tn<1.