已知数列AN的前N项和为SN ,且A1=A,S(N+1)=2SN+N+1,求AN的通项公式.若A=1,BN=N/A(N+1)-AN,BN的前

问题描述:

已知数列AN的前N项和为SN ,且A1=A,S(N+1)=2SN+N+1,求AN的通项公式.若A=1,BN=N/A(N+1)-AN,BN的前
N项和为TN,已知M>TN,求M的最小值.

1.S(n+1)=2Sn+n+1(1)
Sn=2S(n-1)+(n-1)+1=2S(n-1)+n(2)
(1)-(2)得:a(n+1)=S(n+1)-Sn=2an+1
左右两边同时加上1,a(n+1)+1=2(an+1)
新的数列{an+1}是以a1+1=a+1为首项,2为公比的等比数列
an+1=(a+1)*2^(n-1)
an=(a+1)*2^(n-1)-1
2,若a=1,an=(a+1)*2^(n-1)-1=2^n-1
bn=n/[a(n+1)-an]=n/2^n,
故Tn=1/2+2/(2^2)+3/(2^3)+``````+n/(2^n)············①
1/2Tn=1/(2^2)+2/(2^3)+``````+n/[2^(n+1)]············②,
①-②得:1/2Tn=1/2+1/(2^2)+1/(2^3)+``````+1/(2^n)-n/[2^(n+1)]·
=[1-(1/2)^n]-n/[2^(n+1)]
Tn=2-(1/2)^(n-1)-n/2^n