已知数列{an}是首项为1,公差为2的等差数列,Sn(n属于N)是数列的前n项和,则lim下面为n到无穷 Sn/n^2减1...
问题描述:
已知数列{an}是首项为1,公差为2的等差数列,Sn(n属于N)是数列的前n项和,则lim下面为n到无穷 Sn/n^2减1...
已知数列{an}是首项为1,公差为2的等差数列,Sn(n属于N)是数列的前n项和,则lim下面为n到无穷 Sn/n^2减1=?
答
Sn=n^2
所以sn/(n^2-1)=1/(1-1/2^n),limn趋近于正无穷,2^n趋近于正无穷,1/2^n趋近于0,原式趋近于1