如图,在等腰梯形ABCD中,AB∥CD,AD=BC=a cm,∠A=60°,BD平分∠ABC,则这个梯形的周长是_.
问题描述:
如图,在等腰梯形ABCD中,AB∥CD,AD=BC=a cm,∠A=60°,BD平分∠ABC,则这个梯形的周长是______.
答
∵DC∥AB,
∴∠CDB=∠DBA,
∵BD平分∠ABC,
∴∠CBD=∠DBA,
∴∠CDB=∠CBD,
∴DC=BC=acm,
过D作DE∥BC交AB于E,
∵DC∥AB,DE∥BC,
∴四边形DEBC是平行四边形,
∴DC=BE,DE=BC,∠DEA=∠CBA,
∵DC∥AB,AD=BC,
∴∠A=∠CBA=∠DEA=60°,
∴AD=DE,
∴△ADE是等边三角形,
∴AE=AD=acm,
∴这个梯形的周长是AB+BC+CD+AD=a cm+a cm+a cm+a cm+a cm=5acm,
故答案为:5acm.