等腰梯形ABCD中 ad平行于bc bd平分角abc 求证 1.ab=ad 2.若ad=2 角c=60度 求梯形ABCD的周长
问题描述:
等腰梯形ABCD中 ad平行于bc bd平分角abc 求证 1.ab=ad 2.若ad=2 角c=60度 求梯形ABCD的周长
答
(1)证明:∵AD∥BC,
∴∠ADB=∠CBD.
∵BD平分∠ABC,
∴∠ABD=∠DBC.
∴∠ABD=∠ADB.
∴AB=AD.
(2)∵ABCD为等腰梯形,
∴∠ABC=∠C=60°.
∴∠DBC=30°.
∵AD=AB=DC=2,
∴BC=4.
∴梯形的周长=2+2+2+4=10.