解数学题1/1*3+1/3*5+1/3*7+...+1/99*101=?
问题描述:
解数学题1/1*3+1/3*5+1/3*7+...+1/99*101=?
答
1/3*7这里是不是错了?
1/1*3+1/3*5+1/5*7+...+1/99*101
=1/2X【(1-1/3)+(1/3-1/5)+(1/5-1/7)+...+(1/99-1/101)】
=1/2x(1-1/101)
=1/2x100/101
=50/101
答
=1/2(2/1*3+2/3*5+2/5*7+……+2/99*101)
=1/2(1-1/3+1/3-1/5+1/5-……-1/99+1/99-1/101)
=1/2(1-1/101)
=50/101