观察下列等式:1/1*3=(1-1/3)*1/2; 1/3*5=(1/3-1/5)*1/2; 1/5*7=(1/5-1/7)*1/2利用发现的规律计算:1/1*3+1/3*5+1/5*7+.+1/99*101

问题描述:

观察下列等式:1/1*3=(1-1/3)*1/2; 1/3*5=(1/3-1/5)*1/2; 1/5*7=(1/5-1/7)*1/2
利用发现的规律计算:
1/1*3+1/3*5+1/5*7+.+1/99*101

1/1*3+1/3*5+1/5*7+......+1/99*101
=(1-1/3)*1/2+ (1/3-1/5)*1/2+(1/5-1/7)*1/2+.....+(1/99-1/101)*1/2
=1/2*((1-1/3)+ (1/3-1/5)+(1/5-1/7)+.....+(1/99-1/101))
=1/2*(1-1/101)
=50/101

1∕(1﹡3)+1∕(3﹡5)+1∕(5﹡7)+...1∕(2n-1)(2n+1)
=1∕2(1-1∕3)+1∕2(1∕3-1∕5)+1∕2(1∕5-1∕7)+...+1∕2[(2n-1)-(2n+1)]
=1∕2[1-1∕3+1∕3-1∕5+1∕5-1∕7+...+1∕(2n-1)-1/(2n+1)]
=1/2[1-1/(2n+1)]
=n/(2n+1)
1/1*3+1/3*5+1/5*7+......+1/99*101
=1/2[1-1/101)]
=50/101

原式=1/1*3+1/3*5+1/5*7+.+1/99*101
=1/2*(1-1/3+1/3-1/5+……+1/99-1/101)
=1/2*(1-1/101)
=1/2*100/101
=50/101

原式=1/2*(1-1/3+1/3-1/5+1/5-1/7+……+1/99-1/101)=1/2*100/101=50/101这个叫裂项相消法,高中会学。。