1/1*3+1/3*5+1/3*7+...+1/99*101

问题描述:

1/1*3+1/3*5+1/3*7+...+1/99*101

1/1*3+1/3*5+1/5*7+......1/99*101=(1/2)*(1/1-1/3+1/3-1/5+1/5-1/7+......+1/97-1/99+1/99-1/101)
=(1/2)*(1-1/101)
=50/101

等于(1/2)*(1-1/3+1/3-1/5+1/5-1/7+……+1/99-1/101)=50/101

=1/2(2/1*3+2/3*5+2/5*7+……+2/99*101)
=1/2(1-1/3+1/3-1/5+1/5-……-1/99+1/99-1/101)
=1/2(1-1/101)
=50/101
看其中的一个如2/31*33=(33-31)/31*33=1/31-1/33

你的题目有点问题啊!应该是1/1*3+1/3*5+1/5*7+1/7*9+......1/99*101吧!这是个
很简单的数学题而且很经典以后可能经常考一定要记住了啊
1/1*3=(1/2)*(1/1-1/3);
1/3*5=(1/2)*(1/3-1/5);
1/5*7=(1/2)*(1/5-1/7);
.
.
1/99*101=(1/2)*(1/99-1/101)
以上各式左边与左边相加右边与右边相加得
1/1*3+1/3*5+1/5*7+......1/99*101=(1/2)*(1/1-1/3+1/3-1/5+1/5-1/7+......+1/97-1/99+1/99-1/101)
=(1/2)*(1-1/101)
=50/101