在三角形ABC中,a/sinB=b/sinC=c/sinA,试判断三角形ABC形状

问题描述:

在三角形ABC中,a/sinB=b/sinC=c/sinA,试判断三角形ABC形状


设a/sinB=b/sinC=c/sinA=k,于是:
a=ksinB
b=ksinC
c=ksinA
又根据正弦定理:
a/sinA = b/sinB = c/sinC
因此:
ksinB/sinA = ksinC/sinB = ksinA/sinC
于是:
sinB/sinA = sinC/sinB = sinA/sinC
sin²A=sinBsinC............(1)
sin²B=sinAsinC............(2)
sin²C=sinAsinB............(3)
(1)/(2)得:
sin²A/sin²B=sinB/sinA,所以:
sin³A=sin³B
∴A=B
同理:
B=C
A=C
综上:
A=B=C
所以,该三角形是等边三角形

等边三角形

根据正弦定理:sinA/sinB=sinB/sinC=sinC/sinA∴sinAsinC=sin² B①,sinAsinB=sin²C②,sinBsinC=sin² A①/②:sinC/sinB=sin² B/sin² C∴sinB/sinC=1∵∠B+∠C<180°∴∠B=∠C同理,∠A=∠B...