在△ABC中,角A,B,C的对边分别为a,b,c,且bcosC=3acosB-ccosB.(Ⅰ)求cosB的值;(Ⅱ)若BA•BC=2,且b=22,求a和c的值.

问题描述:

在△ABC中,角A,B,C的对边分别为a,b,c,且bcosC=3acosB-ccosB.
(Ⅰ)求cosB的值;
(Ⅱ)若

BA
BC
=2,且b=2
2
,求a和c的值.

(I)由正弦定理得a=2RsinA,b=2RsinB,c=2RsinC,则2RsinBcosC=6RsinAcosB-2RsinCcosB,故sinBcosC=3sinAcosB-sinCcosB,可得sinBcosC+sinCcosB=3sinAcosB,即sin(B+C)=3sinAcosB,可得sinA=3sinAcosB.又sinA≠0...
答案解析:(1)首先利用正弦定理化边为角,可得2RsinBcosC=3×2RsinAcosB-2RsinCcosB,然后利用两角和与差的正弦公式及诱导公式化简求值即可.
(2)由向量数量积的定义可得accosB=2,结合已知及余弦定理可得a2+b2=12,再根据完全平方式易得a=c=

6

考试点:正弦定理;平面向量数量积的运算;两角和与差的正弦函数;余弦定理.
知识点:本题考查了正弦定理、余弦定理、两角和与差的正弦公式、诱导公式、向量数量积的定义等基础知识,考查了基本运算能力.