已知ω>0,向量m=(√3sinωx,cosωx),向量n=(cosωx,-cosωx),且f(x)=m·n+1/2且f(x)=m·n+1/2的最小正周期π(1)求f(x)的解析式;(2)已知a,b,c分别为△ABC内角A,B,C所对的边,且a=√19,c=3,又cosA恰是f(x)在[π/12,2π/3]上的最小值,求b及△ABC的面积.
问题描述:
已知ω>0,向量m=(√3sinωx,cosωx),向量n=(cosωx,-cosωx),且f(x)=m·n+1/2
且f(x)=m·n+1/2的最小正周期π
(1)求f(x)的解析式;
(2)已知a,b,c分别为△ABC内角A,B,C所对的边,且a=√19,c=3,又cosA恰是f(x)在[π/12,2π/3]上的最小值,求b及△ABC的面积.
答
⑴f(x)=m•n+1/2=√3sinωxcosωx-cos²ωx+1/2=√3/2•sin2ωx-1/2•cos2ωx-1/2+1/2=sin(2ωx-π/6),∵ω>0,∴T=π=2π/2ω => ω=1,∴f(x)=sin(2x-π/6);----------------------------------...