有关正定矩阵的问题

问题描述:

有关正定矩阵的问题
设A为n阶对称矩阵,证明:A满秩的充要条件是存在实矩阵B,使AB+B-TA为正定矩阵.

对A用对称阵的规范型来作.它分成了两项,怎么弄到一起额-》如果A满秩,取B=A《-反证法。如果A不满秩,假定A本身就具有规范型。A的规范型中有0,这样AB+BTA,有零对角元素,不可能是正定阵。这脑壳太迟钝了,谢谢了