已知等差数列{an}的前n项和为Sn且满足a2=3,S6=36. (1)求数列{an}的通项公式; (2)若数列{bn}是等比数列且满足b1+b2=3,b4+b5=24.设数列{an•bn}的前n项和为Tn,求Tn.

问题描述:

已知等差数列{an}的前n项和为Sn且满足a2=3,S6=36.
(1)求数列{an}的通项公式;
(2)若数列{bn}是等比数列且满足b1+b2=3,b4+b5=24.设数列{an•bn}的前n项和为Tn,求Tn

(1)∵数列{an}是等差数列,
∴S6=3(a1+a6)=3(a2+a5)=36.
∵a2=3,∴a5=9,∴3d=a5-a2=6,∴d=2,
又∵a1=a2-d=1,∴an=2n-1.
(2)由等比数列{bn}满足b1+b2=3,b4+b5=24,

b4+b5
b1+b2
=q3=8,∴q=2,
∵b1+b2=3,∴b1+b1q=3,∴b1=1,bn=2n-1
∴an•bn=(2n-1)•2n-1
∴Tn=1×1+3×2+5×22+…+(2n-3)•2n-2+(2n-1)•2n-1
则2Tn=1×2+3×22+5×23+…+(2n-3)•2n-1+(2n-1)•2n
两式相减得(1-2)Tn=1×1+2×2+2×22++2•2n-2+2•2n-1-(2n-1)•2n,即
-Tn=1+2(21+22++22n-1)-(2n-1)•2n
=1+2(2n-2)-(2n-1)•2n=(3-2n)•2n-3,
∴Tn=(2n-3)•2n+3.