已知a、b、c是△ABC的三边,试判别方程a²x²+(a²+c²-b²)x+c²=0根的情况
问题描述:
已知a、b、c是△ABC的三边,试判别方程a²x²+(a²+c²-b²)x+c²=0根的情况
答
△=(a²+c²-b²)²-4×a²×c²
=(a²+c²-b²+2ac)(a²+c²-b²-2ac)
=[(a+c)²-b²][(a-c)²-b²]
∵a、b、c是△ABC的三边
∴a+c>b,(a+c)²>b²即(a+c)²-b²>0
|a-c|(两边之和大于第三边,两边之差小于第三边)
∴△∴方程a²x²+(a²+c²-b²)x+c²=0没有实数根