tan(α+β)=3/5,tan(β-π/4)=1/4,则tan(α+π/4)值为
问题描述:
tan(α+β)=3/5,tan(β-π/4)=1/4,则tan(α+π/4)值为
答
7/23
答
tan(α+π/4)=tan[(α+β)-(β-π/4)]
=[tan(α+β) - tan(β-π/4)] / [1 + tan(α+β)*tan(β-π/4)]
=[(3/5) - (1/4)] / [1 + (3/5)*(1/4)]
=7/23
答
利用 tan(A+B) = (tanA+tanB)/(1-tanAtanB)这个公式把β-π/4和α+π/4各看做一个整体tan(β-π/4+α+π/4)=tan(α+β)=3/5设tan(α+π/4)=x根据公式则tan(β-π/4+α+π/4)=(tan(β-π/4)+x)/(1-tan(β-...