数列﹛an﹜的前n项和Sn满足﹙a-1﹚Sn=a﹙an-1﹚数列﹛bn﹜满足bn=an•lg an

问题描述:

数列﹛an﹜的前n项和Sn满足﹙a-1﹚Sn=a﹙an-1﹚数列﹛bn﹜满足bn=an•lg an
请讲下那个an

已知Sn满足﹙a-1﹚Sn=a﹙an-1﹚……(1)
则﹙a-1﹚Sn-1=a﹙an-1-1﹚……(2)
(1)—(2)得﹙a-1﹚(Sn—Sn-1)=a﹙an-an-1﹚
即﹙a-1)an=a﹙an-an-1﹚→an/an-1=a
由(1)式,令n=1得a1=a
∴an为等比数列,且an=a×a^(n-1)=a^n﹙a-1)an=a﹙an-an-1﹚→an/an-1=a这个怎么得到的你把前面式子中的括号去掉,化简就可以得。