已知x^2=x+1,y^2=y+1,且x≠y.(1)求证:x+y=1.(2)求x^4+y^4的值
问题描述:
已知x^2=x+1,y^2=y+1,且x≠y.(1)求证:x+y=1.(2)求x^4+y^4的值
答
两式相减得x^2-y^2=(x+1)-(y+1),即(x+y)(x-y)=(x-y),因为x不等于y,所以x-y不等于0,故x+y=1
x^4+y^4=(x+1)^2+(y+1)^2=x^2+2x+1+y^2+2y+1=(x+1)+(y+1)+2(x+y)+2=3(x+y)+4=3+4=7为什么x^4+y^4=(x+1)^2+(y+1)^2因为x^4=(x^2)^2=(x+1)^2,条件里有x^2=x+1