如图,在Rt△ABC中,AB=AC,∠BAC=90°,过点A任做一条直线AN,BD⊥AN于D,CE⊥AN于E.
问题描述:
如图,在Rt△ABC中,AB=AC,∠BAC=90°,过点A任做一条直线AN,BD⊥AN于D,CE⊥AN于E.
如果将直线AN绕A点顺时针方向旋转,使它不经过△ABC的内部,再作BD⊥AN于点D,CE⊥AN于点E,那么DE、DB、CE之间还存在等量关系吗?若存在,请证明你的结论;若不存在,请说明理由.
答
∵ ∠BAC=90°
∴∠CAE+∠BAD=90°
∵BD⊥AE
∴∠ABD+∠BAD=90°
∴∠ABD=∠CAE
∵AB=AC ∠ADB=∠CEA=90°
∴△ABD ≌△CAE
∴AD=CE BD=AE
∵DE=AE+AD
∴DE=BD+CE