如图,AB是⊙O的直径,AC是⊙O的切线,A为切点,连接BC交圆O于点D,连接AD,若∠ABC=45°,则下列结论正确的是( ) A.AD=12BC B.AD=12AC C.AC>AB D.AD>DC
问题描述:
如图,AB是⊙O的直径,AC是⊙O的切线,A为切点,连接BC交圆O于点D,连接AD,若∠ABC=45°,则下列结论正确的是( )
A. AD=
BC1 2
B. AD=
AC1 2
C. AC>AB
D. AD>DC
答
∵AC是⊙O的切线,A为切点,
∴∠CAB=90°,
∵∠ABC=45°,
∴△ABC是等腰直角三角形,AB=AC.
∵AB是⊙O的直径,
∴∠ADB=90°,
∴点D是BC的中点,
∴AD=BD=CD=
BC,1 2
故只有A正确.
故选A.