如图,AC是圆O的直径,AC=10厘米,PA,PB是圆O的切线,A,B为切点,过A作AD⊥BP,交BP于D点,连接AB,BC.(1)求证△ABC∽△ADB;(2)若切线AP的长为12厘米,求弦AB的长.
问题描述:
如图,AC是圆O的直径,AC=10厘米,PA,PB是圆O的切线,A,B为切点,过A作AD⊥BP,交BP于D点,连接AB,BC.
(1)求证△ABC∽△ADB;
(2)若切线AP的长为12厘米,求弦AB的长.
答
证明:(1)∵AC是圆O的直径∴∠ABC=90°∵AD⊥BP∴∠ADB=90°∴∠ABC=∠ADB∵PB是圆的切线∴∠ABD=∠ACB在△ABC和△ADB中:∵∠ABC=∠ADB,∠ABD=∠ACB∴△ABC∽△ADB.(2)连接OP,在Rt△AOP中,AP=12厘米,OA=5...
答案解析:(1)根据AC为⊙O的半径,可知:∠ABC=90°,由AD⊥BP,可知:∠ABC=∠ADB,根据切线的性质知:∠ABD=∠ACB,从而可证:△ABC∽△ADB;
(2)在Rt△POA中,根据勾股定理可将OP的长求出,再根据△ABC∽△PAO,可将AB的长求出.
考试点:相似三角形的性质;圆的切线的性质定理的证明.
知识点:本题主要考查相似三角形的判定及切线性质的应用.本小题主要考查函数单调性的应用、函数奇偶性的应用、不等式的解法等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.